
Parallel visualization on leadership computing

resources

T Peterka,1 R B Ross,1 H-W Shen,2 K-L Ma,3 W Kendall,4 H Yu,5
1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439, USA
2Department of Computer Science and Engineering, The Ohio State University, Columbus,
OH 43210, USA
3Department of Computer Science, University of California at Davis, Davis, CA 95616, USA
4Department of Electrical Engineering and Computer Science, University of Tennessee at
Knoxville, Knoxville, TN 37996, USA
5Sandia National Laboratories, California, Livermore, CA 94551, USA

E-mail: tpeterka@mcs.anl.gov

Abstract. Changes are needed in the way that visualization is performed, if we expect the
analysis of scientific data to be effective at the petascale and beyond. By using similar techniques
as those used to parallelize simulations, such as parallel I/O, load balancing, and effective use of
interprocess communication, the supercomputers that compute these datasets can also serve as
analysis and visualization engines for them. Our team is assessing the feasibility of performing
parallel scientific visualization on some of the most powerful computational resources of the
U.S. Department of Energy’s National Laboratories in order to pave the way for analyzing the
next generation of computational results. This paper highlights some of the conclusions of that
research.

1. Introduction
Visual representations can provide compact summaries of large amounts of scientific data. As
numerical simulations and experiments produce higher quantities of information, the challenge
for visualization researchers is to continue to discover graphical methods that scale with the
growth in data size and complexity. Since its recognition in 1989 as a core component in the
scientific process [1], visualization has evolved with changing technologies, mainly influenced
by consumer-grade graphics accelerators and relatively low-cost clustered architecture. Today,
thanks to research in the field over the last twenty years, visualization has its own place in the
science workflow pipeline shown in Figure 1. This is a data flow model—bytes move from one
stage to the next. Data size in the hundreds of terabytes or petabytes, however, can overwhelm
this model as the cost of managing data movement between stages overtakes the actual work
done in the stages. The high cost of data movement is magnified by the relatively short duration
of the visualization step. An alternative approach is to substitute some of the data flow with
control flow—by moving some of the tasks to the data rather than the other way around.

This implies performing some or all of the analysis and visualization operations on the same
supercomputers as the simulation. In the U.S. National Laboratories, the most powerful of
these machines are called leadership computing resources. There are three potential benefits



Figure 1. The stages in computational science: simulation, analysis, and interaction, in a
customary data-flow pipeline. As the cost of data movement becomes prohibitive, performing
visualization on machines traditionally reserved for computation can shorten overall time.

to this shift in performing visualization on leadership machines, compared to graphics clusters.
First, end-to-end performance can improve because of reduced data movement. Second, this
performance savings can afford higher quality visualization in the form of rendering improvement;
for example, incorporating more complex lighting models or processing a larger portion of the
total dataset in core. The third benefit is economic. As leadership machines continue to scale,
deploying and operating proportional-size data analysis clusters becomes more costly. At some
point, it will not be economically feasible for a leadership facility to maintain both types of
architecture at these scales.

The U.S. Department of Energy has established Leadership Computing Facilities at Argonne
and Oak Ridge National Laboratories. Each facility maintains a different supercomputing
architecture: the Argonne Leadership Computing Facility (ALCF, [2]) has an IBM Blue Gene/P
(BG/P) system while the Oak Ridge National Center for Computational Sciences (NCCS, [3])
maintains a Cray XT4 system. The BG/P has 160 K cores while the XT4 has approximately
31 K cores. The BG/P has access to a 5 petabyte PVFS parallel file system, while the XT4 is
connected to a Lustre storage system.

As datasets grow in size and number of variables, the time that it takes to transfer each
time-step (in the case of time-varying data) from storage to memory becomes significant. In
fact, Peterka et al. [4, 5] showed that I/O can consume up to 90% of the total visualization
time. One of the research directions of the SciDAC Institute for UltraScale Visualization [6]
is to evaluate how parallel I/O techniques [7, 8] and libraries [9] can expedite the I/O stage in
data-intensive visualization and analysis.

2. Selected Results of Case Studies
In one study, we benchmarked parallel volume rendering on the BG/P at the ALCF. The data
for this test are simulation results produced by John Blondin of North Carolina State University
and Anthony Mezzacappa of Oak Ridge National Laboratory. The VH-1 hydrodynamics code
simulates the static accretion shock of a core-collapse supernova [10], and it generates a time-
varying dataset. Each time step is a netCDF file with five variables.

The parallel volume rendering algorithm consists of three stages. In the first stage, I/O, the
time-step file is read into memory by all processes in parallel. The second stage, rendering,
has all processes concurrently performing software ray-casting through their respective data
subdomains. At the end of the second stage, each process contains a volume-rendered image
of its subdomain. The images are merged together in the third stage, called compositing. The
relative time that each stage requires changes with the system scale; our experiments range from
64 processes to 32 K processes. The data size ranges from 11203 elements to 44803, and the
image size ranges from 10242 to 40962 pixels.

A performance summary of three data sizes and system scales appears in Figure 2. The time
axis represents the total end-to-end time needed to visualize a single time step, including I/O,
rendering, and compositing. The 11203 dataset with 10242 image size scales to 16 K processes;
beyond this point the subdomains are too small to justify using more cores. The upper two
curves show scalability out to 32 K processes on larger data and image sizes. The uppermost
curve represents a data size of 44803 with an image size of 40962; with 32 K processes, this is



●

●

●

●

●

50 100 200 500 1000 2000 5000 20000

5
10

20
50

10
0

20
0

50
0

10
00

Volume Rendering End−to−End Performance

Number of Processes

T
ot

al
 F

ra
m

e 
T

im
e 

(s
)

● 4480^3 data, 4096^2 image
2240^3 data, 2048^2 image
1120^3 data, 1024^2 image

Figure 2. Scalability over a variety of
data, image, and system sizes. Several
performance points are available for each curve;
one may select a smaller system scale, for
example, based on resource availability, and
still complete the visualization in a matter of
seconds or minutes.

Figure 3. The relative percentage of time
spent in I/O, rendering, and compositing as
a function of system size. At large system
scale, visualization is dominated by data
movement: primarily by I/O and secondarily
by compositing. The data size and image size
for this test is 11203, and 10242, respectively,
but the pattern shown is typical of all of our
tests.

one of the largest in-core parallel visualization results published to date.
Figure 3 illustrates how the relative proportion of time spent in each stage changes as the

system scale grows. At the left side of the plot, rendering occupies 50% of the total time, but
as the system scale increases, the fraction of time spent in rendering is almost negligible. This
is one reason why software rendering is practical on relatively low-power processors such as
BG/P’s. Most of the time is spent in I/O, and even compositing overtakes rendering at 8 K
cores. This pattern is typical of all of our tests: large scale visualization is dominated by data
movement.

Because I/O is such a critical part of the large-scale visualization process, our team devotes
considerable effort to its study. Figure 4 shows the result of one such experiment. The diagrams
represent a log of disk activity, when reading one variable out of the five variables contained in
a netCDF dataset. The dark rectangles represent physical file blocks that are read in as a result
of this collective I/O request. Starting with the original implementation (left), reorganizing the
data layout and using a new 64-bit version of the netCDF format (right) resulted in a nearly
three times shorter I/O time. Comparing the left and right diagrams, fewer blocks total blocks
are accessed in the right diagram, and their physical placement on disk is contiguous. Our
collaborators in the SciDAC SDM center provided an early release of the new netCDF format
for this research.

One pattern that often occurs in scientific data organization is one time-step per file, resulting
in many files for a single dataset. In a study on the Cray XT reading several hundred time-
steps of NASA’s Moderate Resolution Image Spectroradiometer (MODIS) dataset, our team is



researching how to efficiently read all of these files in parallel into the memory of thousands of
cores. This situation occurs, for example, when comparisons across time steps are required in
the analysis. By using a greedy algorithm that assigns files or portions of files to processes in
a round-robin fashion, and by placing files on all 144 Lustre Object Storage Targets (OSTs), we
achieved the 28 GB/s aggregate read bandwidth shown in Figure 5. This is approximately 75%
of the maximum peak bandwidth measured by the IOR benchmark.

Many application teams are experimenting with “I/O subsetting,” or performing I/O
operations from only a fraction of the nodes used for computation. We found that controlling
the number of processes that perform the actual writing of the output image (writers) improves
performance and memory usage. The right plot in Figure 6 shows that between 32 and 512
writers is appropriate. Figure 6 also shows that we are able to achieve better writing performance
by controlling the subsetting through the application (right), rather than by supplying hints to
MPI-IO (left). In both cases a minimum time occurs at 8 or 16 aggregators (the MPI-IO entities
actually performing the writing on behalf of MPI processes), but by controlling the number of
writers explicitly, this optimal setting is achievable in a wider range of configurations.

3. Summary
As leadership computing machines and the simulations that run on them extend to petascale and
beyond, analysis of the results must scale accordingly. In order to meet this challenge, we are
studying what circumstances favor performing more of the analysis and visualization operations
directly on these flagship systems that have tens of thousands of cores, a high-throughput
interconnect, and parallel storage infrastructure. As our research shows, these characteristics
are critical at large scales because analysis and visualization are dominated by data movement.
Through careful study of data movement patterns, especially to and from storage, entire datasets

Figure 4. Log of disk activity. Dark rectangles
represent physical file blocks that are touched
in order to retrieve one out of five variables in a
netCDF data file. Left: most of the file is read,
resulting in wasted effort. Right: Through our
collaboration with the SciDAC SDM center, a
new 64-bit version of netCDF results in fewer
physical blocks accessed, which are contiguous.
This resulted in a three times speedup in I/O
time.

●

●

●

●

●

●

●

●
●

● ●

20 50 100 200 500 1000 2000 5000 20000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Number of Processes

Ba
nd

wi
dt

h 
(M

B/
s)

Aggregate I/O Bandwidth

3 7 15 31 60 120 227 416 416 416 416
Number of Files

Figure 5. Aggregate bandwidth for reading
up to 416 time steps of the MODIS full
resolution dataset simultaneously into up to 16
K processes peaks at 28GB/s, or 75% of the
IOR benchmark.



●

●

●

●

● ●

●

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Value of bgl_nodes_pset Hint

W
rit

in
g 

Ti
m

e 
(s

)

Varying Number of Aggregators Through MPI_IO Hints

8 64 128 256 512
Total Number of Aggregators

●

●

●

●

●
●

●
●

●

●

●

0 500 1000 1500 2000
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
Number of Writers

W
rit

in
g 

Ti
m

e 
(s

)

Varying Number of Aggregators Through Application

8 8 8 16 32 64
Total Number of Aggregators

Figure 6. The effect of I/O subsetting, via MPI-IO hints (left) vs. using a custom communicator
in the application code (right). As the right plot shows, manually assigning a number of processes
to perform parallel image writing produces better a shorter time over a wider range of settings.

can be analyzed in-core and in full resolution. We are experimenting with other visualization
techniques and more complex data sets that involve both scalar and vector time-varying data.
We will continue to produce benchmarks that other researchers can use to perform parallel
visualization on leadership computing resources.

Acknowledgments
We thank John Blondin and Tony Mezzacappa for their dataset and valuable feedback. We
gratefully acknowledge the use of the resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory and the National Center for Computational Sciences at Oak Ridge
National Laboratory. This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.
Work is also supported by DOE with agreement No. DE-FC02-06ER25777.

References
[1] DeFanti T A, Brown M D and McCormick B H 1989 Computer 22 12–25 ISSN 0018-9162
[2] 2009 Argonne Leadership Computing Facility http://www.alcf.anl.gov/
[3] 2009 National Center for Computational Sciences http://www.nccs.gov/
[4] Peterka T, Yu H, Ross R and Ma K L 2008 Parallel volume rendering on the ibm blue gene/p Proc.

Eurographics Parallel Graphics and Visualization Symposium 2008 (Crete, Greece)
[5] Peterka T, Ross R, Yu H, Ma K L, Kenall W and Huang J 2008 Assessing improvements in the parallel

volume rendering pipeline at large scale Proc. SC 08 Ultrascale Visualization Workshop (Austin TX)
[6] 2009 SciDAC Institute for Ultra-Scale Visualization http://ultravis.ucdavis.edu/
[7] Carns P, Ligon W B I, Ross R and Thakur R 2000 Pvfs: A parallel file system for linux clusters Proc. 4th

Annual Linux Showcase & Conference (Atlanta, GA) p 28
[8] Thakur R, Gropp W and Lusk E 1999 Data sieving and collective i/o in romio Proc. 7th Symposium on the

Frontiers of Massively Parallel Computation pp 182–189
[9] Li J, Liao W k, Choudhary A, Ross R, Thakur R, Gropp W, Latham R, Siegel A, Gallagher B and Zingale

M 2003 Parallel netcdf: A high-performance scientific i/o interface Proc. Supercomputing 2003 (Phoenix,
AZ)

[10] Blondin J M, Mezzacappa A and DeMarino C 2003 The Astrophysics Journal 584 971



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.


